Solvability of nonlinear elliptic equations with gradient terms
نویسندگان
چکیده
We study the solvability in the whole Euclidean space of coercive quasi-linear and fully nonlinear elliptic equations modeled on ∆u±g(|∇u|) = f(u), u ≥ 0, where f and g are increasing continuous functions. We give conditions on f and g which guarantee the availability or the absence of positive solutions of such equations in R . Our results considerably improve the existing ones and are sharp or close to sharp in the model cases. In particular, we completely characterize the solvability of such equations when f and g have power growth at infinity. We also derive a solvability statement for coercive equations in general form.
منابع مشابه
Solvability of uniformly elliptic fully nonlinear PDE
We get existence, uniqueness and non-uniqueness of viscosity solutions of uniformly elliptic fully nonlinear equations of Hamilton-Jacobi-BellmanIsaacs type, with unbounded ingredients and quadratic growth in the gradient, without hypotheses of convexity or properness. Some of our results are new even for equations in divergence form.
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملSolvability for a Class of the Systems of the Nonlinear Elliptic Equations
Let Ω be a bounded subset of Rn with smooth boundary. We investigate the solvability for a class of the system of the nonlinear elliptic equations with Dirichlet boundary condition. Using the mountain pass theorem we prove that the system has at least one nontrivial solution.
متن کاملSolvability of Quasilinear Elliptic Equations with Strong Dependence on the Gradient
We study the problem of existence of positive, spherically symmetric strong solutions of quasilinear elliptic equations involving p-Laplacian in the ball. We allow simultaneous strong dependence of the right-hand side on both the unknown function and its gradient. The elliptic problem is studied by relating it to the corresponding singular ordinary integro-differential equation. Solvability ran...
متن کاملThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012